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Phase-equivalent potentials obtained from supersymmetry 
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Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60680, USA 

Received 6 December 1988 

Abstract. Given any central ( o r  one-dimensional) potential, we discuss the general problem 
of using supersymmetry transformations to calculate families of potentials which are phase 
equivalent to it, but have 0, 1, 2, 3 , .  . . less bound states. Various interesting properties of 
such families of potentials are derived, and i t  is shown how the previously studied 
Abraham-Moses and Purser potentials emerge as limiting cases. For concreteness, the 
isospectral one-parameter families for two specific potentials of physical interest (the 
Coulomb and harmonic oscillator potentials) are fully worked out. 

1. Introduction 

Phase-equivalent potentials, that is potentials which have the same phase shifts and  
essentially the same bound-state spectrum have been discussed by many authors in a 
variety of contexts [l-71. For example, in the context of aa scattering, Baye [2] has 
recently discussed the ambiguities involved in determining the potential even when 
the phase shifts and bound states are precisely known. Seemingly unrelated potentials 
obtained by different authors from the same input phase shift data have in fact been 
shown to be related to supersymmetry ( S U S Y )  transformations [2,3]. In a similar spirit, 
Amado [4] has found potentials which are phase equivalent to the Coulomb potential, 
but which have one less bound state. Given their many physical applications, additional 
study and  understanding of phase-equivalent potentials is clearly desirable. Here, we 
will review previous work and extend the discussion to any arbitrary central potential 
V-( r ) ,  0 s r < cc. More specifically, we will show that ( i )  Amado’s construction for 
the Coulomb potential is simply the previously developed Pursey procedure [5,6] for 
constructing isospectral Hamiltonians with one less bound state but the same phase 
shifts; ( i i )  the procedure can be easily repeated to generate additional phase-equivalent 
Hamiltonians with 2, 3 , .  . . less bound states; ( i i i )  for any central potential V ( r )  there 
exists a continuous one-parameter ( A  ) family of strictly isospectral Hamiltonians (i.e. 
exactly the same eigenvalue spectrum and S matrix as V - ( r ) ) .  When the parameter 
A + 0 (-l), one obtains the Pursey [5] (Abraham-Moses) [7] potentials, in which the 
ground state of V - ( r )  is absent. The supersymmetric partner potential V+( r )  has the 
same bound-state spectrum as the Pursey and Abraham-Moses potentials. These results 
are developed in § 2 after a brief review of the formalism of supersymmetric quantum 
mechanics [8]. In § 3, the results are applied to the Coulomb and  harmonic oscillator 
potentials. For illustrative purposes, we plot several members of the strictly isospectral 
family of potentials along with their ground-state wavefunctions. These plots give a 
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nice intuitive feel for the manner in which a family is obtained. Some additional 
interesting properties of isospectral Hamiltonians are discussed in Ej 4. In particular, 
we show that successive repetition of the transformation which generates a one- 
parameter family of isospectral potentials does not yield more new families: the group 
theoretic structure of this transformation is clarified. It may be noted here that although 
we have so far talked about central potentials, exactly analogous results are also valid 
for one-dimensional potentials V(x), -a < x < m. 

2. Formalism 

In supersymmetric quantum mechanics [8], the superpotential W(X)  determines the 
two-partner potentials 

V*(x) = W'(x) k d  W/dx (2.1) 

where the units have been chosen so that f~ = 2m = 1. When supersymmetry is unbroken, 
the eigenstates of V,(x) are related by 

E n + , -  1 - 1  - E ( + )  n E;-' = 0 

where 

d d 
d x  d x 

A'= ---+ W ( X )  A=-+  W ( X )  

d 
d x  

W(x)  = --[In +:;'(x)]. 

(2.2) 

(2.3) 

(2.4) 

The transmission and reflection amplitudes for the partner potentials V,(x) are related 
by ~ 5 ~ 9 1  

R-(k)=(-)R+ik) W- t i k  
W- - ik ,  

T - (k )=[ (  W+ - ik ' ) / (  W--ik)]T,(k) (2.5) 

where k and k' are given by 

k = ( E -  Wz)"' k ' = ( E -  

with 

w, = W(x = &CO). 

Similarly, for three-dimensional, central potentia!s the scattering matrices for the 
partner potentials are related by [9] 

(W, - i k ' )  
S-(  k ' )  = S+(k') .  

(W++ik ' )  

Note that for the three-dimensional case W, = W( r = 00) while S (  k') = e i d i k ' )  with S (  k ' )  
being the phase shift. 
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We would now like to raise the following interesting question: given the partner 
potential V + ( x ) ,  is the potential V - i x )  unique? In  other words, for a given V + ( x )  
what are the various fortns of W ( x )  and hence V - ( x j ?  Following Nieto [3], let us 
assume that there exists a more general superpotential $ ( X I  which satisfies 

V + ( x )  = W(.x)+ +(X).  (2.9) 

Clearly + ( x )  = W ( x )  is one of the solutions to (2.9). To find the most general solution 
let us set 

* ( X I  = W ( X ) + 4 ( X )  (2.10) 

y ’ = 1 + 2 WV 

in (2.9) and use ( 2 . l j .  We then find that y = l / d ( x )  satisfies the Bernoulli equation 

(2.11) 

whose solution is 

d 
?..(x) d .x 

- d ( x ) = - l n [ l ( x ) + A ] .  
1 __ - 

The quantity I ( x )  appearing in (2.12) is defined by 

I ( x )  = 1‘ [ILb-’(x)]’ dx 
--cr 

(2.12) 

(2.13) 

where A is a constant of integration and  $h-’ jx)  is the normalised ground-state 
wavefunction of V _ ( x ) .  Thus the most general W ( x )  satisfying (2.9) is given by 

(2.14) 
d 

dx 
k ( x )  = W ( x ) + - l n ( l ( x ) + A ) .  

Consequently, there exists a one-parameter family of potentials o-(x) given by 

(2.15) 

all of whom have the same SUSY partner V + ( x ) . *  Notice that V - ( x )  is itself a member 
of this one-parameter family since as A + +CC, V ( x )  -$ V - ( x ) .  

From (2.4) and (2.14) it follows that the normalised ground-state wavefunction 
corresponding to the potential ? - ( x  j is 

(2.16) 

This is an  acceptable bound-state eigenfunction only if it is square integrable. Since 
I ( x )  as given by (2.13) lies between 0 and 1, it is useful to distinguish between three 
different cases. 

Case a. A > 0 or A < - 1 .  In  this case & ‘ ( x )  is an acceptable eigenfunction, since 
$b-’(x) is square integrable. Thus the bound-state spectrum of k ( x )  is identical to 
that of V _ ( x j .  Further, i t  follows from (2.13) and (2.14) that in this case ~* = W ,  so 
that 

R - (  k )  = R - (  k )  f - ( k )  = T - ( k )  (2.17) 
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(and in the three-dimensional central potential case g- (kf )  = S-(k‘)). Thus we see that 
for any potential V-(x) there is a one-parameter family of potentials given by (2.14) 
and (2.15) with A > 0 or A < - 1 )  which are strictly isospectral to it, i.e. they have same 
bound state spectrum and same scattering matrix. Since A > 0 or A < - 1 ,  it is also 
clear that all members of the family have the same behaviour as x +. +CO (or r + 0, CO). 

It also follows from here that if the potential V-(x) is exactly solvable (i.e. E,,, 4, are 
all known) then k ( x )  is also exactly solvable with E\-’ = ii-’ ,, , $A-’ is given in terms 
of $i-) by (2.16) while can be also easily obtained in terms of normalised 
eigenfunctions IJ!,:’~. In particular, using (2.2) and (2.14) it easily follows that the 
normalised excited-state eigenfunctions for the potential p - (x)  are given by ( n  = 
0, 1 , 2 , .  . .) 

This expression for the excited-state wavefunction is simpler than the one obtained 
by using inverse scattering theory (for a review of the inverse scattering approach, see 
[I]) where one is required to perform an  indefinite integral like 

Ix $b-’(~)$L;’~(y) dy. 
--x 

Case b. A = 0 or A = -1. In  Tither of these cases Z(x) + A will vanish (at x = -cc or 
x = +CO respectively) so that +b-’(x) is not square integrable. Thus, in both these cases 
SUSY is broken and hence the bouJd state spectrum is degenerate with that of V+(x). 
In other words, as A -+ 0 or - 1 ,  V-(x) loses a bound state. For A = 0, this was first 
pointed out by Pursey [5], and hence the corresponding potential will be termed 
Vip’(x). The situation for A = - 1  is equivalent to earlier work by Abraham and Moses 
[7] and hence we shall denote the corresponding potential by ViAM’(x). Let us discuss 
these cases separately. 

(i) Purseypotential ( A  = O ) .  The Pursey potential is obtained from e- (x)  by setting 
A =0,  i.e. 

d‘ 
d x  

~ “ ’ ( x )  = ~ ( x )  - 2  7 In I ( X )  

while 

d 
d x  

~ “ ’ ( x )  = W(x)+-  In Z(x). 

(2.19) 

(2.20) 

Using (2.13), it immediately follows that 

WLPJ = w+ WLP’= - w- .  (2.21) 
Since supersymmetry between V-(x) and V+(x) is unbroken, i.e. W+ and W- have 
opposite signs, it follows that WiP) and Wyp’ must have same signs. This implies that 
the supersymmetry between V,(x) and V“’(x) is broken ( E ( , P ’ = E r ’ ) .  In view of 
(2.5)-(2.8), one gets 

(2.22) 
W--ik ‘ 
W-+ik 

R“’( k) = (-) R-( k)  

TIp’( k )  = -( -) W--ik T_( k)  
W-+ik (2.23) 
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while in the three-dimensional central potential case 

S"'( k') = S - (  k'). (2.24) 

Thus, we have shown that for any central potential V - ( r ) ,  the corresponding h r s e y  
potential V"'( r )  as given by (2.19) is phase equivalent (or almost isospectral) to V-( r )  
(more generally to ?- ( r ) )  but has one less bound state. For some special choices of 
the potential this result has been obtained previously by Baye [2] and Amado [4]. The 
normalised eigenfunctions corresponding to V"'( x )  are readily obtained by setting 
A = O  in (2.18). One finds ( n  =0,1,. . .) 

(2.25) 

Clearly, the procedure used to generate V"' from V- can be reapplied to V"' with 
the help of (2.25) with n = 0. This new ground-state wavefunction $c' will generate 
(for = 0) yet another isospectral potential with two bound states less than V- ,  but 
the same phase shifts. It will also generate (for --CC < x < -1, 0 < x < 00) a new family 
of potentials which are strictly isospectral to V"'. 

(ii) Abraham- Mosespotential ( A  = - 1 ) .  The Abraham-Moses potential is obtained 
from q-(x) by setting A = -1, i.e. 

(2.26) 
d2  

d x  
VAM'(x) = v-(x) - 2  7 l n ( I ( x ) - l )  

while 

(2.27) 
d 

d x  
W(AMi ( x )  = W(x)+- ln ( I (x ) - l ) .  

From (2.13) it then follows that 

w',"" J = - w+ W'AM'= w_ (2.28) 

i.e. the supersymmetry between V+(x) and V ' A M ' ( ~ )  is broken (ELAM'= E',+'). From 
(2.5)-(2.8) it also follows that 

R(AM'(k)  = R-(k )  

W++ik'  
W+-ik 

T(AM'( k)  = -( -) T-( k) 

while in the three-dimensional central case 

S(AMl(k') = ( w++ik')' S-(k'). 
W+-ik' 

The normalised eigenfunctions corresponding 
0, 1,2,  * * .) 

(2.29) 

(2.30) 

to ViAM'(x) can be shown to be ( n =  

Case c. - 1  < A  CO. In this case the potential ?-(x) given by (2.15) is singular at some 
finite value of x. We shall reject such singular potentials on physical grounds. 
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3. Isospectral potentials to the Coulomb and oscillator potentials 

To elucidate the discussion of the last section, it may be worthwhile to present a few 
examples. With this in mind, we shall now explicitly obtain the one-parameter family 
of isospectral potentials corresponding to the Coulomb and three-dimensional har- 
monic oscillator potentials. 

3.1. Coulomb potential 

As is well known [8], in this case the superpotential is 

(1+1) e' W(r)  = --+- 
r 2 ( I t 1 )  

so that 

e4 1(1+1) e* 
V-(r) =-+--- 

4(1+1)2 r2 r 

while 

e4 (1+1)(1+2)  e* 
r2 r 

-- V+( r)  = - 
4(1+1)2+ 

(3.2) 

(3.3) 

Using (2.4) the normalised ground-state eigenfunction corresponding to the potential 
V-(r) can be shown to be 

Now it is straightforward to compute Z(r) as defined by (2.13). We find 

Z(r) = y ( 21+3; - (;;;))[(2'+2)!1-' 

(3.4) 

(3.5) 

where 

y ( a ;  b )  = y o - '  e-' dy I: 
is an incomplete gamma function. Using the formalism of the last section and the 
normalised Coulomb wavefunctions it is then straightforward to compute ?-( r ) ,  
V"'( r), V'AM'( r) and the corresponding wavefunctions. Notice that p-( r) is strongly 
I dependent. In figures 1-4, we have plotted some of them for the special case of 1 = 0 
and have chosen e 2 = 2 .  In figure 1, we see that as A varies from +a to 0 (i.e. as one 
moves away from the Coulomb potential), the (strictly isospectral) potentials start 
developing a maximum. As A becomes smaller and smaller, the value of the maximum 
goes on increasing and the corresponding position starts shifting towards r = 0. Finally 
as A becomes zero, this maximum shifts to r = 0 so that there is a net gain of two units 
of angular momentum, but in this process one bound state gets lost. This is the limit 
in which one goes over to the Pursey potential V ( ' ) ( r ) .  It is quite noticeable from the 
figure that the curves for A =0.02 and A = O  hug each other over a wide region of r. 
In figure 2, we have plotted the family of potentials as A varies from -cc to -1  with 
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r 

Figure I .  Potentials with O <  A < s which are strictly isospectral to the Coulomb potential 
V-( r )  given by (3 .2)  with I = 0, e2  = 2. When A = 0, one has the Pursey potential VIp'( r ) ,  
which has one less bound state. V ' " ( r )  and V-(r) have the same phase shifts. 

t 

-1.1 
k! 

- 2  -1 l / r  1 i , , , j , ,  , , , , I , ,  , , 1 , 
0 2 4 6 8 

r 
Figure 2. Potentials with - w <  A < - 1  which are strictly isospectral to the Coulomb 
potential V _ ( r )  of figure 1. h h e n  A = -1 ,  one has the Abraham-Moses potential V A M ' ( r ) ,  
which has one less bound state V"wl and V _ ( r )  do noi have the same phase shifts. 

the h = --iy: potential being the original Coulomb potential. Here we note that as A 
approaches -1, the potential develops a minimum which shifts towards r =a as A is 
varied. Finally, as A becomes -1, this attractive potential well shifts to r = Q) and is 
lost, thereby losing one bound state. This is the limit in which one goes over to the 
Abraham-Moses potential V ' A M ' ( r ) .  In figure 3 ,  we have plotted the three potentials 
V + ( r ) ,  V '" ( r )  and V ' A M ' ( r )  which have identical bound state spectra (but which are 
not isospectral as they have different phase shifts). In particular, from (2.8), 
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1.50 

1.25 

1.00 

0.75 

0 .50  

0.25 

0 1 2 3 4 5 
r 

Figure 3. The Pursey potential V'"(r), Abraham-Moses potential V'AM'(r) and SUSY 
partner potential V+(r) for the Coulomb potential V-(r) of figure 1. All these potentials 
have the same bound-state spectrum, but different phase shifts. 

1.5 

1.0 

0.5 

i h.02 

0 0.5 1.0 1.5 2.0 2.5 
r 

Figure 4. Ground-state wavefunctions &,( r )  for all the potentials drawn in figure 1, except 
V' "( r ) .  

(2.29) and (2 .30)  it follows that 

S+( k') = ( e 2 / 2 ( f + l ) + i k ' )  e2/2( I +  1) - ik' S-( k ' )  

S"'( k ' )  = S-(  k ' )  

e2 /2 (1+  1) + i k ' ) *  
e 2 / 2 (  I +  1) - ik' 

S'AM'( k ' )  = ( S - ( k ' )  
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where 

r [ e 2 / 2 (  I + 1) + i k ' ] ~ ~  e 2 / 2  - ik'] 
r[ e 2 / 2 (  I + 1) - ik']T[ e 2 / 2  + ik'] '  

S-( k') = (3 .7)  

From the figure it is clear that the usual way of obtaining the partner potential with 
one bound state less (Darboux procedure) is sort of intermediate between the Pursey 
and  Abraham-Moses procedures. Whereas in the Pursey approach, one 'lifts' the 
potential u p  from the left, in the Abraham-Moses approach one 'lifts' it up  from the 

, I # ,  , I l l  I ,  1 1 , / , , 1 1 , , , / , , , ,  
0 0.5 1 .o 1.5 2.0 2.5 3.0 

r 

Figure 5. Various potentials with O <  A < a0 which are strictly isospectral to the harmonic 
oscillator potential V-(r) given by (3.7) with I = 0, w = 2. When A = 0, one has the Pursey 
potential V"'(r )  with one less bound state. 

-10 I 4  I 1 1 1 / 1 , 1 , , , , / , ,  
0 1 2 3 

r 

Figure 6. Potentials with -a < A < 1 which are strictly isospectral to the harmonic oscillator 
potential V - ( r )  of figure 5 .  T h e  Abraham-Moses potential V ' A M ) ( r )  has one less bound 
state and corresponds to A = - 1 .  
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right. In the Darboux approach one 'lifts' from both ends, but by a smaller amount 
than in the Pursey or AM construction. We shall in fact rigorously show in the next 
section that if for r + 0 we have V-( r )  - I (  I + 1)/ r 2 ,  then V+( r )  - ( I  + 1 ) ( I  + 2 ) /  r 2 ,  
V"'( r )  - ( I  + 2 ) (  I + 3)/  r2  while V(AM'( r )  - I ( / +  1 I /  r 2 .  Note that the phase equivalence 
of the Coulomb potential and the corresponding Pursey potential (equation (3 .6) )  was 
pointed out by Amado [4]. 

In figure 4 we have plotted the ground-state wavefunctions for the isospectral family 
? - ( r ) .  

15 I \ \  i 
l o t  \ \ A 

V I A M I  OV I 
0 0.5 1.0 1.5 2 . 0  2.5 3.0 

r 
Figure 7. The Pursey potential V ' " ' ( r ) ,  Abraham-Moses potential V ' * ' " ' ( r )  and SUSY 

partner potential V + (  r )  for the three-dimensional harmonic oscillator potential V - (  r )  of 
figure 5 .  All these potentials have identical bound-state spectra. 

I l  \ 
0 . 5  1 0  1.5 2.0 2.5 3 0  

P 

Figure 8. Ground-state wavefunctions & ( r ) / r  for all the potentials drawn in figure 5 ,  
except V ' " ' ( r ) .  
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3.2. Harmonic oscillator potential. 

Proceeding analogously we have in this case 

w (1+1) 
W (  r )  = -j r -- 

r 
2 

V - ( r )  =- r 2 + - -  '('+') w ( / + 3 / 2 )  
4 r2 

o J 2  2 ( l + l ) ( l + 2 )  
V + ( r ) = - r  + 7 - w ( l +  1 / 2 )  4 r- ( 3 . 8 )  

( 3 . 9 )  

Hence, 

I ( r )  = y ( 1 + 3 / 2 ;  w r 2 / 2 ) / r ( l + 3 / 2 ) .  (3.10) 

From here one can readily compute ?-( r ) ,  V"'( r )  and V'AM'(  r )  and the corresponding 
energy eigenfunctions. For the special case of 1 = 0 (and choosing w = 2 )  these have 
been plotted in figures 5-8.  It may be noted here that in this confining potential case 
V + ( r ) ,  V"'(r) and V ' A M ' ( r )  are strictly isospectral. However, they d o  not belong to 
a single one-parameter family as they behave very differently for r + O .  In this case, 
one finds that as ( A (  decreases from 03 to 0 the potential develops a minimum which 
becomes deeper and narrower as IA 1 decreases. As A + 0 this attractive deep potential 
function moves towards r = 0 and  is eventually lost, thereby taking away one bound 
state. 

4. Some properties of isospectral Hamiltonians 

The formalism developed in § 2 as well as the discussion of the last section raises 
several questions. Some of them are the following. 

(i) By starting with a given potential V - ( r ) ,  one can generate a one-parameter 
family of potentials V - ( r ) .  An obvious question is that if one now starts with any 
particular member p-( r, A ) and again constructs a one-parameter family of isospectral 
Hamiltonians then does one generate another distinct family? If yes, then in this way 
one would have an infinite number of one-parameter families of isospectral Hamil- 
tonians! We show below that this is not the case. 

(ii) We saw in Q 2 that for any potential V - ( r ) ,  one can always construct the 
phase-equivalent Pursey potential V"'( r )  having one bound state less. An obvious 
question is whether one could repeat this construction and obtain a series of phase- 
equivalent potentials with 2 , 3 , 4 ,  . . . bound states less than V-( r ) .  

(iii) We have seen in 0 2 that even though V + ( r ) ,  V"'(r) and V C A M ' ( r )  have the 
same bound-state spectrum, in general they have different scattering matrices. The 
question is in what way d o  these potentials differ from each other? 

(iv) Just as there are three isospectral families, i.e. one for V+( r ) ,  one for V L p ' (  r )  
and one for V ' A M ' ( r ) ,  what about the three analogous families having the same 
bound-state spectrum as V - ( r ) ?  How does one find these families and  d o  they always 
exist? 

We will now answer and  discuss the four questions raised above. 
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4.1. Uniqueness of the one-parameter family 

Here we wish to show th:t the one-parameter family c - ( x )  as given by (2.15his unique, 
i.e. if one starts with V-(x, A )  and works out its one-parameter family V-(x) then 
one does not get anything new. The proof is rather straightf!rward. 

Let us start with the one-parameter family of potential V-(x) as given by (2.15) 
for a given value of A outside the interval [-1, 01. Clearly its one-parameter family 
of potentials would be given by 

d2 d2 
t - ( x )  = Q-(x) -2  7 In( f ( x )  +i) = V-(x) - 2 7 In[( I + A )( f + i ) ]  d x  d x  

where (see (2.16)) 

(4.1) 

Since & ( y )  = I ' (y j ,  the integral can be evaluated to give 

A( l+A)  
f ( x )  = (l+A)-- I (x )  + A ' 

Therefore 

2 d 2  
V-(x) = V-(x) - 2  -ln[(l + A  + i ) ( l ( x ) +  A )  - h(1 + A ) ]  

d x  

d' A i  
q = n .  

= V - ( x ) - 2 7 l n [ I ( x ) + q ]  
d x  

(4.2) 

(4.3) 

(4.4) 
A 

Thus the second iteration does not give anything new as V-(x) has a similar form to 
e ( x )  except that A has been changed to q as given by (4.4). Note that the parameter 
q remains in the range --a3 < q < -1,0 < q < 03, whenever both A and  1 are in the same 
ranges. In fact, it is easy to show that the set of transformations which generate 
one-parameter families form a group, with the law of composition given by (4.4). 

4.2. The number of almost isospectral Hamiltonians 

In  § 2 we showed that for any central potential V-(r),  one can always construct the 
corresponding Pursey potential V"'(r) which is phase equivalent to V-(r) but has one 
bound state less. Clearly one can repeat this construction further and treating V"'( r)  
as the starting potential one can calculate its corresponding Pursey potential V'pp'( r), 
which then clearly will be phase equivalent to V-(r) but will have two bound states 
less. In this way if V-(r) has n bound states, then one can construct n + 1 almost 
isospectral (i.e. phase-equivalent) Hamiltonians with 0, 1 ,2 , .  . . , n bound states less. 
Two remarks are in order at this stage. Firstly, clearly for all confining potentials with 
pure bound-state spectrum, V+(r), V"'( r)  and V'AM'( r )  and their families are strictly 
isospectral. Further, all of them are almost isospectral to V-( r )  with one bound state 
less and  so on. Secondly, for symmetric reflectionless potentials in one dimension, 
T+(k) = T'p'(k) = FAM' ( k )  (and of course R ,  = R"' = = 0) so that they are also 
strictly isospectral and all of them again are almost isospectral to V-(x) with one less 
bound state. 
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4.3. The r + 0 behaviour of various isospectral Hamiltonians 

Here we want to show that if  for small r ( r  + 0 )  any central potential V-( r )  - I (  1 + l ) / r 2  
then V + ( r )  - ( 1  + 1 ) ( 1  + 2 ) / r 2 ,  V"'( r )  - ( I  + 2 ) ( 1  + 3 ) / r 2  and V I A M ) ( r )  = 1(1+ l ) / r 2  [ l o ] ? .  
The proof is fairly straightforward. First, if V _ ( r ) -  1(1+ l ) / r z  as r + O ,  then the 
superpotential W ( r )  as given by (2.4) behaves like (since & ( r )  - r '+ ' )  

(4.5) ( I +  1 )  W (  r )  - -- 
r 

and hence 

( I +  1)( 1 + 2 )  
r- V + ( r ) =  W ' ( r ) +  W ' ( r ) -  , (4.6) 

However, for a given V - ( r ) ,  the most general * ( r )  and c - ( r )  are as given by 
(2.14) and (2.15). Since O S  I ( r ) s  1 it is clear that for any non-zero A (including 
A = - 1 ,  i.e. the Abraham-Moses potential), 

1 ( l i l )  l ( l +  1 )  
W(r ) - -  P ( r l - 7 .  r (4.7) 

In the special case of A =0 ,  i.e. the Pursey potential, this is no longer true. Since 
Go( r )  - Ar'+',  as r + 0, i t  follows that 

/ ( 2 1 + 3 )  (4.8) I (  r )  - A2r2'+3 

so that 

Hence, as r + O ,  

v ( P l ( r ) -  ( I  + 2 ) (  1 + 3 )  
W"'(r)--  

r r2  

(4.9) 

(4.10) 

It may be noted here that even though V+(r ) ,  V" ' (r)  and V A M ' ( r )  behave differently 
for r -+ 0, all of them have identical leading asymptotic behaviour as r -+ cc. 

4.4. Addition of a bound state below the ground state 

We have seen that starting with a potential V_(  r ) ,  one can obtain three distinct families 
of potentials V + ( r ) ,  V" ' (r)  and V ' A M ' ( r )  with the same bound-state spectra. On the 
other hand, corresponding to V - ( r ) ,  we have only been able to construct one family 
of isospectral potentials, i.e. P - ( r ) .  What about the other two families of potentials? 
How can one construct these? Clearly, the recipe would be to treat V-( r )  3 V + ( r )  and 
obtain the corresponding partner potential U-(  r )  (with one additional bound state) 
and hence f i - ( r ) .  In practice the way to d o  this is to find the solution 4 ( r )  of the 
Schrodinger equation for potential V - ( r )  with zero eigenvalue, such that 4(r )  diverges 
both at r - 0  and r +  E, so that l / d ( r )  will be well behaved in both limits [ 5 ] .  Clearly 
this procedure can be done until we arrive at the potential with zero centrifugal barrier, 

t For the supersymmetric partner potential V+(r), this was previously noticed by lmbo  a n d  Sukhatme in [lo]. 
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i.e. for which &( r )  - r as r + 0. The obvious point which we would like to make here 
is that one cannot add  any more states below it, since then the new potential U - ( r )  
would have a centrifugal barrier of -1 and  correspond to a divergent wavefunction 
at r = 0, which is unacceptable. 
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